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Rank-based Inference for Linear Models: Asntric Errors

L

In this paper robust, rank-based inference procedures are considered

for general linear models with (possibly) asymmetric errors. Approximating

standard errors of estimates and testing hypotheses about the model

paranters require estimating a scaling functional, and an approach is

developed which, unlike previous wcrk, does not require symmetry of the

underlying error distribution or replicates in the design matrix. Hence,

imortant asymmetric models such as arise in life testing can now be

handled. Further, it is shown that the asymptotic properties of the

inference procedures hold with simpler conditions on the design matrix

than previously required. In addition an estimate of the intercept is

developed without requiring the assumption of a symnetric error distribution.

Ji

U.

U.

,', V*','1$\ ~ ~ ~ .4&>.R. .* * , *:



1. Introduction In this paper robust, rank-based infere-,ce proct ures

are considered for general linear models with (possibly) asvmmetric

errors. Approximating standard errors of estimates and testing hypotheses

about the model parameters require estimating a scaling functional, and an

approach is developed which, unlike previous work, does not r-quire

symmetry of the underlying error distribution (McKean and Hettmansperger

1976) or replicates in the design matrix (Draper 1981). Hence, important

) asymmetric models such as arise in life testing can now be handled.

Further, it is shon that the asymptotic properties of the inference

procedures hold with simpler conditions on the design matrix than pre-

viously requimed. In addition an estimate of the intercept is developed

without requiring the assumption of a symmetric error distribution.

The models to be considered and the basic assumptions are now given.

The vector of observations (YI Y2, Y3, .... Yn)' is assumed to

satisfy either

(1.1) X + +

or

(1.2)

where is the n x 1 vector of ones, is the p x 1 vector of unknown

regression coefficients, a -if it is included- is the unknown intercept,

and z (el, e 2 , ... , en)' is an n x 1 vector of independent, identically

distributed rand= errors with continuous cumulative distribution

function F. We will impose the following assumptions as needed:
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(1.3) F has density f having finite Fisher information; that is,

f is absolutely continuous and

_ (f'(e)/f(e))2 f(e)de < .

(1.4) )n is a kn , n x p full-rank fatrix with i 1 1 *wq

The centered matrix cn = xn - n "1 n ×n is also full

rank,

(1.5) n-1 [ , Xn]Y [ , n] -> A,

a positive definite matrix, as n -> m.

(1.6) n-1 C ->

a positive definite matrix, as n -> .

We note in passing that (1.5) implies (1.6). Where possible without confusion,

the dependence of various quantities on n will be suppressed.

The inference procedures for to be considered are based on a measure of

dispersion proposed by Jaeckel (1972). For an n x 1 vector , define the

dispersion as
n(1.7) D(,Y) -E a(i) v(i),
11

where V( 1 ) < v( 2 ) .... V(n) are the ordered elements of y and a(l),... ,a(n)

are a set of scores satisfying some regularity conditions. Consideration in

this paper is restricted to Wilcomon scores,

(1.8) a(i) = 121/2 (i/[n+l] ,- 1/2).

Thus each element of k is assigned a weight proportional to the difference

between its rank among the n elements and the average rank. Procedures based

on these scores generalize the Mann-Whitney-Wilcoxon two-sample procedure and
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inherit its asymptotic efficiency.

Jaeckel proposed estimating , by minimizing D(X - 4) and showed the

estimate thus obtained is equivalent to an estimate previously suggested by

Jureckova (1971) in the sense that nI/2 times the difference converges to

zero in probability. Thus the two estimates have the same limiting distri-

bution; specifically, under conditions to be weakened in this paper in the

case of Wiloxon scores, nl 2 ( ) converges in distribution to a

multivariate normal random variable with mean R and variance-covariance

matrix T2 E-1here

(1.9) T1=121/ 2 f 2C(e) de.

It is often desirable to test hypotheses about of the form

(1.10) H0 : H = versus

HA:

where H is a full-rank q x p matrix with q < p. A consistent test for (1. 10)

can be based on a quadatic form in the full-model estimate of

Q = T H'CH(.CC) 1 HI 1 H,

where T is some consistent estimate of T. The statistic Q has an asymptotic

S2(q) distribution under H0 , If q < p, a consistent test for (1.10) can

also be obtained by fitting both the full model and the reduced model induced

by H0. Letting 4 and be the corresponding estimates, McKean and

Hettmansperger (1976) showed that

(1.12) =2(D) _ K - D( -

- has an asymptotic X(q) distribution under H and can be used as a test

statistic. Both test statistics require a consistent estimate of the scaling

functional T. The estimates previously proposed necessitate either the
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assumption of a symnmetric error distribution or replicate rows in X. In

Section 3 an estimate is developed without either of these assumptions.

I, The asymptotic theory for , Q, and D* is founded on the asymptotic

linearity of the gradient of the dispersion D( - X ) treated as a

function of . Thus the technical assumptions adopted by Jureckova (1971)

in her proof of the asymptotic linearity have been carried over by

subsequent authors, In Section 4 it is showm that this linearity property -

for the important case of Wilcoxon scores - can be obtained without sane of

the cc~mlicaed assmptions on the design matrix required by Jureckova;

specifically, her assumptions 3a, 3b, and 3c are eliminated. The results

of Kraft and van Eeden (1972) for linearized rank statistics should also

hold under less complicated assumptions on the design.

Since Dq - a - 4e) = D(X , )), Jaeckel's dispersion function pro-

vides no information concerning the intercept. McKean and Hettmansperger

(1978) howed that s can be estimated by applying a one-sample signed-rank

procedure to the residuals after estimating , if the error distribution

is symmetric. In Section 5 an estimate is proposed which does not require

symmetry of F and its joint asymptotic distribution with is stated.

2. A Preliminary Lemma The proofs of the results in this paper

rely on a lemma which is, in essence, imbedded in the proof of Theorem 3.1

of Jureckova (1969), We state the lemma here for convenient reference.

In the sections to cce, we are concerned with the asymptotic behavior

of some rendcm variable Hn( n , Y), where n is a consistent estimate of a

parwmter , and Y is a random vector. For simplicity the dependence on
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n is suppressed. In many cases it is easy to determine the behavior of

H( ,X), and if it can be shown that H(Zj) - H(Q,) converges to zero in

probability, the behavior of H(ZX) is also determined.

For example, let W be a function of the residuals ei = Y.i

after fitting a linear model. Then one can think of W as H((o ) ,

where H((a , ) is that same function of the "residuals" Yi- a -

Since HC(( W ) , X) is a function of the independent, indentically distri-

buted errors e Yi - a - x" B its behavior may be simple to determine.

The following lemma gives sufficient conditions for H(ZX) - H( ,X)

to converge to zero in probability.

Lemn 2.1 Suppose H(F',) =Q(g,k) + ;-(g-Z),werQ(g,X) is mo~notone

in each of the components of g , perhaps nondecreasing in same,

nonincreasing in o and II/ t < K < - for sane t > 0. Here ; may

depend an n; )j" is the supnorm througout this paper. If H(g,X) -

H(,) converges to zero in probability for g = + 4/n with fixed,

then for each B, 0 < B <

SUPI jH~g,k) - H k

converges to zero in probability, where the supremum is over

fg: nt Ig - < B}. F1urthermore, if nt( - ) is bounded in probability,

A

then HQ, ) - H( ,X) converges to zero in probability.

3, Scaling Functional In the one-sample setting, several authors

(Bhattacharyya and Roussas 1969; Schuster 1974; Schweder 1975; Abmad 1976;

Cheng and Serfling 1981) have considered estimating T-1 using window (kernel)

density estimates, sometimes as a particular case of more general estimation
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problem. However, no one has treated the problem when the estimate is

computed using cqpendent quantities, such as the residuals in regression.

1Let f n(e) be the window estimate of f(e) given by
nn

(3.1) fn(e) =(nh) Z wEe-ej./hn)n n i=l

where el, .. ,, en are a random sample frci a distribution having density
f, w is a density, and hn Cn=l, 2, 3, .,.) is a sequence of constants

converging to zero. Under appropriate regularity conditions, the

estimate for = T-/ 1 2  given by

(3.2) n fn (e)dFn(e),

where F is the usual empirical distribution function, is strongly consistentn

and asymptotically normal.

The estimate (3.2) can be written as.

.(3.3) (n Z Z w([ei-ej ]/ )

- w(O)(nhn)' + (n 2 h) - 1  EE w(Cei-ej]/hn).

Since the nonrandcm contribution of the i=j terms is of smaller order than

the randCm portion due to the igj terms, for the asymptotic theory we wrk

only with the latter, Thus we consider

' (3.4) 6 En2hn "l ZZ w([ei-ej]/n) ,is
and show that a remains consistent for 6 when the ei are replaced by the

A -. %A

dependent residuals ei  Y i-0- 6(om ei = Yi - i ) and h is replaced by

a randam hn, under mild conditions on w., hn, n and hn . In applications it

is necessary to use the data to determine the window width, in order to
5% ^

Nobtain good performance and to make 0 scale equivariant. Note that in
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this section is not necessarily the rank estimate.

Theorem 3.1 Suppose;

i) w is a square-integrable, strongly unimodal density, symmetric

about zero, with finite second moment;

(ii) hn = n-rh, where 0'<r < 1/2 and h is a positive constant;
(iii) nl/2 ( ) is bounded in probability; and

Civ) n h-h) is bounded in probability for sane q > 0, and h =n-rh

Then under assumptions (1.3), (1.4), and (1.6), for model (1.1) with

i= Y - - (or for model M 12) with. e i  Yi

(3.5) 6 E nhn / ei-ej/h) converges in probability to 6.

Proof: For arbitrary p x 1 and k > 0 define

(3.6) T(b;k) = En2hn] 1 ZZ w ( [ Yi -k - /

where k = n-rk. Then T(Q;h) is the estimate of 6 based on the independent,

identically distributed ei and on the nonrandom window width hn; and
A A f4A Ae h/hn]T(;h) is the estimaste based on the residuals ei and randcm window

A ^ ^width hn. It is now shown that T( ;h) - TNh) converges to zero in

probability. Since, under the conditions of the theorem, T( ; h) is easily

shown to converge to 6 in probability (Aubuchon(1982) used a projection

argument to show that n (T( ;h) - 6) converges in distribution to a normal

random variable under these conditions) and ht/hn converges to 1 in

probability, this implies that 8 also converges to 6 in probability.

Although T( ;k) is not of the form required by Lemma 2,1, it is

possible to split T(;k) into two pieces, each of which is of the necessary

7



form. To this end, we define the following monotone functions. Let

(3.7) wl(z) = w(z) , if z < 0

= w(0) if z > 0; and

w2(z) - 0 , if z < 0

= w(z)-w(0) , if z > 0.

Then w(z) = wl(z) + w2(z). Also, let the 2p x 1 vector

(3.8) i = (i-)-,

where (*i-kj)+ is the vector of positive parts of (i-,j) and (6i- j)- is

the vector of negative parts, so that (ki-k) :(i-*j)+ + (i )-recall

that x is the ith rOW of the design. Letting (for 2p x 1,)

(3.9) V (Q;k) =[n 2 hn]-1 Z w([ei-ej_ j-_ )]k)

we have T(I;k) = T( ,k) when " (J')). Finally, note T*(k;k) T*(;k) + T(;k),

where

for m= 1, 2.

The following lemma establishes conditions under which

m (m:k) -.*((k" .);h) converges to zero in probability for m = 1, 2. The

proof of the lemma involves lengthy, calculations and is deferred to Appendix

A. The linear term subtracted in T and added in T*2 plays a crucial role

in the proof.

Lena 3.1 For m = 1, 2, under the conditions of Theorem 3.1,

E[Tm*(;k) - T ((I);h)) 2 .0

8
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as n - where -q + ql/ 2 andk h a/n q for any fixed and a.

Note that
(3.11) T( ;k) *( ) h

[ [n 2hn rZrw (Cei-e- .. j( -( ) kn) -wm([ei-ej]/h) ]

i~j-,t-.m n 2h]-i LEE ijO

The first summation is monotone in the components of k, while

S 1  in/ 2  M2(n )- ax n-1 n 2i,I :. .I [nhn- N i Z ij, < 2(n"hn k ilZ ' I , wed.

Since n"( ̂ -k) is assumed to be bounded in probability, Lemma 2.1 (with tl1/2)

implies that

(3.12) TmI( (X);k) - T*( (11h

convexes to zero in probability for m 1, 2 and k h-+ a/n5. Furthermore,

Tm*(( );k) - V 1);h) is monotone in k. Since nh- is assumed to be

bounded in probability, it follows from Lema 2.1 that

-S ( 3.13) TMV¢¢ );h) - Tm¢¢ );h)

converges to zero in probability for m 1, 2.

Recalling that

(3.14) T( ;h) - T( ;h)

-T*(( 6 )h) - *(;h, .< =T )-) -T ( );h)

+ T 2(& );h) -T2*(( );h)
t i t s r

~this yields the desired result.

%9
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4 Example For applications, we consider a modified form of (3.3):
(3.15) b* = (nh)- + [n(nl)hn]- 1 .w([ei-ej]/hn),

1 J

where h is a constant, and we take h n-i/2 h. The authors (1984, Section 4)

show that, in the iid case, the bias is then of order n- I  If the underlying

error distribution has density f(y,6) = 6-1f (6- 1 y), then

2.

(3.16) h = 2-1  f 1f(y)] 2 dy f u2 w(u) u1/
will make the first - order terms in the bias vanish.

If we take fl to be the normal density with interquartile range

equal to 1, 6 the sample interquartile range (defining h), and w the uniform

density on (-1/2, 1/2), then by Theorem 3.1,

(3.17) 8* = (4.n 6)-i + (4.1n1n 2 (n-l)6)- II w (4lf

* is a consistent estimator of e.

4. Linearity of the Gradient of the Dispersion In this section, it

is shown that, for Wilcoxon scores, the asymptotic linearity property of

the gradient of the dispersion, first proved by Jureckova (1971), holds

*under simpler conditions on the design matrix. Thus the work of subsequent

authors in developing the asymptotic properties of ,, Q, and D*, which

relied on the linearity, also is valid under simpler assumptions.

The dispersion of - X may be written as

n
(4.1) D(Y-Xb) =Z a(R(Yi.RA (Y . 1

i=l

.1121/2 
n

1 Z [R(Yi-qi)/(n+l) 1-/2(Yi-q' ),

10
i4 i

S . ''' ... ". .,.,.,. , . .... ,, .. .. . . . . .... , _ .. ,. . ,.,; . ., . ,
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where iis the it row of the centered design matrix C (1.5) and RCY~-~

is the rank of "aogY-Ygrdetf
-'i 1 - -Then thegrieto

D(X-X k), taken as a function of kexists except on a set of Lebesque

measure zero in RP. When it exists, the negative of the kth element of

00 this gadient is

(4.2)1/ '5 c 21/2 n 12

=12 1/2 (n+l1il n j (~-$j)

Since the ranks in (4.*2) are translation invariant, Sk A) can be further

rewritten:

£cik R(ei-q"(-),

noting that e. =Y. a -x;j'. (or e. Y

Theorem 4.1 For model (1.1) orrimodel (1.2), under assumptions (1.3),

'.

(1.4), and (1.6), and for SkJk) defined by (4.2),

,.'%

(4.4) SUPISA() - SA + T (k1 (Mn -1/2

converges to zero in probability as n dwhere the suprem m is over
is/2 Ihe ran o i- I andg is the kth colmnof Z, the limit of n1 CC.

Proof Slutsky's Theorem implies that (n+1) t(k))'where l(k) is the

kth column of C, may be susiue o ()since (n+1) 'C C -. as n

Define
(4.5) n/ ( 1 21/21/2

+: n Ci[RY -c'. )/(n+l). 12

T ) = I 1  (C -W)' k (i- )

Again we cannot directly apply Lemta 2.1 to Tk( ) but must split the

""ninthte Yi- **** - *i*" C*.. ei = Yi - * i-..)"C

.Thorm .1Fr odl 1.I) moel(i 2, nerasumtin (i C ),

"~C V K. 1.C41,.p and (1.'), an f *C * C(C) deie by (4.2),-.-



quantity into two pieces. As before (3.8) let

++

:< ( ~i-*j- / ( -

Letting

(4.7) Tkl() 121/2[nl/2 (n+1)]-1 n n
12 Cn!+J).j E I~e.-e. JI-

i.l ik j.

- T- [n(n+l)]-lnl/2( + and
i=l Ik _~

11/En12(1111n n

Tk2( ) l +l)] i= Ie-ei -" Ji-
1 ) 2. i 1n n

- lCn(n+l)-i/2( -. ji)" (k-(

i:l j.
for any 2p x 1 k, we have

(4.8) Tk() = Tk(V) + Tk2 (C) when k )(" '"

The following lemma establishes that Tkm(,)-Tkm (( -. )') converges to

zero in probability for m : 1, 2 when : ( ') + /n . The proof

of the lemm involves lengthy calculations and is left to Appendix B.

CLemma 4.1 For m = 1, 2, under the conditions of Theorem 4.1,

as n - - where q + /n1/2  for any fixed d. Now the first

portions of Tkl() and Tk2(Q) are monotone in the camponents of k. Futher,

n n n n. i' 11[n3/(n+l)]-inl/2i~ Z C+ jz1  jijj and 11l[n 3/2 (n+l)]-inI / 2 E i E. el  -Z ji lI

are bounded. Thus Lemma 2.1 implies that

45.5, %.(4,.9) supT ,)- T m( " @) "



converges to zero in probability, where the supremum is over

n, nl/2 Il I_ -+ )'II .B}. Now A = (k: n 1/2 Ilk-C ",')I < B

and : (" )} is a subset of this set. Thus (4.9) still converges to

zero in probability when the suprenum is taken over A. This, along with

(4.8), yields the desired result, since the suprem of a sum is less than

or equal to the sum of the suprema.

5. Intercept A simple estimate a of the intercept for model (1.1)

is given by the median of YI-k ' ... , n Using a proof similar to

4. that of Theorem 4.2 (c) in McKean and Hettmansperger (1978), it is possible

to show that nl /((a-c) ( I) ) converges in distribution to a nmlti-

variate normal random varible with mean q and variance-covariance matrix
]"

2 - 2 2 lx

xx

where E is the limit of n-1 CC and kx is the limit of, the p x 1 vector

of column means of X. The conditions needed are (1.3), (1.4), and (1.5);

See Aubuchon (1982) for the details.

-. 1
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Appendix A: Proof of Lemma 3.1

Before proceeding with the proof, same preliminary consequences of

the assumptions of Theorem 3.1 are stated without proof.

Lem A. 1 For any of length 2p, % ' 4/nI/2 _ 0 uniformly in i,

as n-.w

Lemma A. 2 f is bounded.

Lemma A. 3 If G is the cumulative distribution function of e -e

where eI and e2 are independent and have c.d.f. F, then

(i) the density of G,

g(z) ff (e+z)f(e)de,

*is bounded and absolutely coitinuous;

(ii) the derivative of g(z),

g,(z) f f'(e+z)f(e)de,

* is bounded and absolutely continuous; and

(iii) g"(z), the derivative of g'(z), is bounded.

Lemma A. 4 For any of length 2p, n-2ZZ ( -d) is bounded.

Lemma 3.1 For m = 1, 2,
,"E[Tm*(k;k) - Tf -( ( );h)]12 -) 0,

where ( ) + /nl/2and k=h+a/nq , as n -- , for any fixed and a.

Proof Consider the case of m = 1. Referring back to (3.10),

(A. 1) ECT(k;k) - T*((f ,')'; h) ]2

S
4h -2 E we - 1/2 - 1/2

i- h -2 EZ Z E[[w(ei-ej_ -4/nl/2/kn)Iei<_ej+ 4/nl2

n i~ s~ -i/ n }i

' - w(Cei-e. )/h)I{ei<ej }

14
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+ w(O)(I{ei>e j+ j/nl/2}-1I(e i>ej }+6ijq/nI1/2) ]

x( e s -et- /n1/2 ]/ sr / nl/2}

-w(Ees-etJ/hn)I (es<et}

, +w(O)(I{es >et+I n  
s t  /n

Partition the terms in this quadruple sum into three groups:

(A.2) Group Description Count

G1 Two matching pairs of subscripts 2n(n-l)

G2 One matching pair 4n(n-1)(n-2)

G3 No matching pair n(n-1)(n-2)(n-3)

TOam n2(n-1)2

and deal with each group separately.
Consider the terms in group Gi; they are uniformly bounded (using

Lama A.1), so their sum is 2n(n-l)nhn-20(1) = (nh)-20(1) . 0.+

as n*-, where 0(l) is bounded.

Aong the terms in group G2 consider, for example, the sum of those

with j t:

SA.3) n E Mij x Msj fej) dej
j=t ~

< n-4-hn2 f 2 x f(e.)

G2 F-
j -t

'I

n- fl h 2  E SUP IMiji I uP I M5iI
G2
j =t

Where



w( -e i-e- ij )f(ei)de i

*!4

+W() _[I >ej + n /n1 / 2 }-I e>e [+ee h 4/nI / 2 f(ei)de
J 1 1

and the suprema are over all i, j, s, and e j. Now if sup IMij 0 and

supIM 8j -+ 0 as n - -, then the sum of termsin group G2 with j = t
coverges to zero, since there are 0a cn3 terms in the sun and n2)1 is

bounded.

But letting u: ei-ej-'/n 1 /2]/k in the first integral and

u: [ei-e.]/h in the second,

(A. ) ] lIkn J,t w(u)f(ej+knu+ n1/2)du

h 
p-

. 1/2 - 1/2+w(0 ) F( e i )-F(e i 1,4 /nI/ ) + Q n I2]

( n +hn) sup(f)/2
. -+w (o )P e + sup (f)3 /,l 1/n / 2I -* o

uniformly in i and j.

Similar argummnts hold for the other cases: i s, i t, and

j =S

Now turn to the stu of terms in group G3.

16



(A.6) n-4 h -2 E E[(.)(.)]
n G3

Sn4h -2 E E[-] EC].,

-" G3

since the mltiplicands are independent when no subscripts match.

Consider one of the expectations:

(A.7) E~w([ei-ej- jd/nl/ 2]/kn)Ifei-ej < j/n 1 / 2 }

-w([e i "e / -) I ee i - e .< 0}

. +w(O)(Ifei-ej  ijg/nl/2}-I{ei-e j > 0}

"+ q jg/nl1/2)

1 /2
fij n nw(E[z_ .. /n 1/2 ]/kn)g (z)dz

+w()[G0)-( j/n 1 / 2 ) + 1 j n/2,

recalling t:hat: G is the cdf of e i-e i with density g, when i~j. Letting

U= [z-[j /nl1/23/k n in the first integral and u =z/hn in the second,

this expectation is

(A.8) kn  0_w(u)g(kn + Z[/nl1/2 )du

".I -h 0 w(u)g(hn u)du

-w(O) (kirjg/nl1/2 )2 G"(4ij)/2,

!?



where i~iJ < J ~j /n I recalling that b G(0). Making a Taylor

-expansion of g() about zero in each inte•al, further reexpress the

... expectation:

0 1/22 2,.:'"(A. 9) k nfoW(U)[g(O)+(knu+ j 4/nl/)g (O))+(k n U+ i]4/n/2)2 ,,i ) / 2]du

-hn. w(u)[Cg(0)+h nU h (. 2 hnu 2 g" (0>/ 2 du-w(0 )% ( 4/n l/2) 2G" (&i )/2,

where 1 i 1 Jknu+D ]%/n 1/21 and 141 l Iknul. Now g'(0) = 0 and g"(')

is bounded (Lenuma A.3). Further, w(u)du 1/2, f ujw(u)du<-, and

C1 u w(u)du<-.  Thus we can write

(A.10) n-2hn -1 Z IEE , 11
ioj

. _n-2 h -1 ZZ- [Ikn-hnlg(0)/2+1 kn130(1)+'kn2i j /n 1/2 10(l )

S+ In ( ijg/nl/2)210(1)+n30 (1)+(kjg/nl1/2 )20(1W] -1 0

as n- 4, since Ikn-nl/h - o, Ikn3 /hn - 0, kn/h n - 0, /n 2  0n n/ nI nn )'D

uniformly in i, j, n-2 .7 (R is bounded (Laima A.4) and (nhO) 0.

But In4 hn"2  EE[ <  n-2  E 12 -- 0 as
G3 ~igj

n - o. Therefore the sum of terms in group G3 converges to zero. A similar

arguent holds for T*(k;k) - T ((;);h), and the proof of the lemina is

ccmplete.
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Appendix B: Proof of Lema '4.1

Before proceeding with the proof, a preliminary lemma which follows

from the conditions of Theorem 4.1 is stated without proof.

Lma B. n- 1/2  max Cik I  0 as n - @, for k 1 1, 2, ..., p.

Lemma '4.1 For m: 1, 2, under the conditions of Theorem 4.1,

ECTJ~nq) -TkM(q- )~2 *. 0

as n -a, where k): ( )+ q/n1/2 for any fixed

Proof For singler notation, the factor (n+l) in Tkm( ) is replaced by

n; see (4.7).

Proof: Calculating the expectation for m: i,

(B.n1) EET[l(k) _ T (( ) -)in2

i:l j:l J -

- Ie.e < O} - e: i"
n n

C1 sk E E t +/nl<n1
I -I {ej-e s !_ 0) - 8 ts -/nl/]

'e" : 12n -3  LE ZE c. Csk E(()(')],
.9 i#j s~t

since Dii : 0. The term in this quadruple sumation can be partitioned

1~31

sinto two roups:

(.2) Desaiption Cont

Gi Same matching subscripts 4n(n-l)(n-2) +2n(n-l)
G2 No matches n(n-l) (n-2) (n-3)

TOTAL n2 (nl) 2

12n' U' " " " -"-"1

4.qSo



Consider the sum of terms in the first group:

(B.3) 12n "3  Z + + E (.)(.)]
Gi Ci cskC(

12n -' Z c+ Csk E[[I(ej-e i < /nl/2}

1-- I{ej-e i <_ 01] x [Ife t-e s <_ s 4/nl/}-I{et-es :S 0}]]

127 + 1/2

Gi Cik Csk3

-Ie1-es 1_ 01- 6)4,4/n1/2]I/nl/2

- e2 ( i ) ( )/n)

2 foQ 1 + Q2-

.,.

Now

Gi

+ +
< 12n Z c.cs [El.I xE II 1 /2 ,

by the Cauiny - S iequality, noting that II{} - {."I is equal

to its oun square. Furthermore,

(B.5) EII{ej-e i  .gi/nl/ 2}- I {ej-e i <0}I

= IG(kj i ,'"2- G2o)I

where IjiI I_ lI];/n 1/2. But G- is bounded Cmta A.3), and

lk~g/ 121converges to zero uniformly in (i,j) as n -~(Lemna A.D).

Further ,

20
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(B.6) n E c. c
Gli1k sk

< n" 1  n c i n2  n +n ( 2+ n E .E iC
-1 i i=j s=l ik sk

n-1  n 2 -

nc + En-1  E ii ]-- iP i:l

n n1 2l~c +C +' 2 2n"I E Z2 + El + n'" E 2
i i k]2

which is bounded since n-1 C C converges. Thus the right-hand side

of (B.4) converges to zero as n , and Q, does also.

Now consider: .3+ +1/
(B.7) Q2 = 12n-3  E c c sk

G1

- G(O) - "'/nl/2]/n 11/ 2 - 62( A)( )/n]

= 12n "3  Z c+ c+ [-Q20iiA( ./n1/2 )2 G" (9 s/(n 1 / 2 )

G2q i 31sq ts

where I "s ./n 1 /1 , recall~ing that G A(0) f f2(ede 6

Since G" is bounded (Lemma A.3), n_3  E c+ c+ is bounded (B.6),

Gi

and Ik:ig/nl/21 -, 0 unifonnly in Ci,j), we have Q2 - 0 also. Referring

back to (B. 3), the contribution of terms in group 1 ccnverges to zero

as n

Finally, turn to the second group. These terms must go to zero

faster than n- , since there are 0(n 4 ) of them and the divisor in front

is only n3 . Since no subscripts match, the maltiplicands are independent

and the expectation factors:

21



(B.) 1 -3 E C+ C+

" G2 ik sk

12 -3 E + +-12~ Ci Csk E[.] E[..
" G2 S

Consider one of these expectations:

!(B.9) E[Ife i-e i i_ ,Zii/nl1/2}1- liej-ei <0}

- e 'ii/nI/2 ]

- G(.i/nl/2 ) - G(0) - G"'(0) i4/n1/2

= (3ig)2 G"C ji)/(2n),

where J ji< I i/n 1 /21. Thus the absolute value of the sunmntion in

(B.8) is:

(B. 10) 112n 3  E Cik c [ ig2 G,, ( .)/Cn)]
G2

x U¢,)2 Gf, " ( 2n)l

< [uPz,,z) 2 [n-l/2 mxlckl]2 n-4 -2 2

G2

But G" is bounded CLmma A.3), and n-1/2 "Ixli converges to zero

~~(Leuna B.1). And )

(B.1n - i j Cig) 2 2

which is bonded (Leia A. LW). Taking this into azcount, the right - hand

side of (B.A0) converges to zero as n .

22
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Thus by showing that the sum over terms in each of the two groups

converges to zero, we have shown that the expectation on the left-hand

side of (B.1) converges to zero. This establishes the lemma for m 1.

v The proof for m . 2 is analogous.

It

5%
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